Math 25
Fall 2017
Lecture 3

A system of linear equation

$$
\begin{aligned}
& -2 \begin{cases}2 x & -3 y=4 \\
4 x & -6 y=8\end{cases} \\
& \text { Solve }
\end{aligned} \Rightarrow \frac{\left\{\begin{array}{l}
-4 x+6 y=-8 \\
4 x-6 y=8
\end{array}\right.}{0 x+0 y=0} \text { (}
$$

1) Graphing

Infinitely Many
2) Subs. Solutions
3) Paddition / Elimination

$$
2 x-3 y=4
$$

Solve for y
Solution

$$
\begin{aligned}
-3 y & =-2 x+4 \\
y & =\frac{2}{3} x-\frac{4}{3}
\end{aligned}
$$

$$
\left\{\left(x, \frac{2}{3} x-\frac{4}{3}\right)\right\}
$$

Different x-Values, we get different y-Values

Solve $\underline{2 x+y=-5}$ Solve for y

$$
0=0
$$

True

$$
\begin{aligned}
& y=2 x-5 \\
& \{(x, 2 x-5)\}
\end{aligned}
$$

Infinitely many Solutions ex: $(1,-3),(3,1)$ $(0,-5)$

Solve

$$
\left\{\begin{array}{l}
x-2 y+z=5 \\
2 x+y-z=7 \\
4 x-y+z=-1
\end{array}\right.
$$

$$
\begin{aligned}
\left\{\begin{aligned}
1-2 y+z & =5 \\
2+y-z & =7 \\
3-y & =12 \\
-y & =9 \\
y & =-9
\end{aligned}\right.
\end{aligned}
$$

Take eqn $2 \dot{\varepsilon} 3$, add them

$$
\begin{aligned}
2 x+y-z & =7 \\
4 x-y+z & =-1 \\
6 x \quad & =6 \\
x & =1
\end{aligned}
$$

$$
2-9-z=7
$$

$$
\begin{array}{cc}
-7-z=7 \\
-z=14
\end{array} \quad(1,-9,-14)
$$

$$
z=-14
$$

Solve

Solve

$$
\left\{\begin{array}{l}
-3 x+4 y-z=-4 \\
x+2 y+z=4 \\
-12 x+16 y-4 z=-16 \\
\text { oo \& } \\
\text { Divisible by } 4
\end{array}\right.
$$

$\operatorname{Eqn} 1 \quad \dot{\varepsilon} 3:$
$0=0 \Rightarrow$ infinitely many Solutions.

$$
-x+3 y=0 \Rightarrow-x=-3 y \Rightarrow x=3 y
$$

$$
(3 y, y,)
$$

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ 4 (x - y) = 8 - z - y } \\
{ 3 = 3 x + 4 z } \\
{ - x + 3 y + 3 z = 1 }
\end{array} \left\{\begin{array}{l}
4 x-4 y=8-z-y \\
3 x+4 z=3 \\
-x+3 y+3 z=1
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
4 x-3 y+z=8 \\
3 x+4 z=3 \\
-x+3 y+3 z=1
\end{array}\right. \\
& \text { En } 1 \dot{\varepsilon} \text { En } 3 \text {, And } \\
& \text { to eliminate } Y \\
& 4 x-3 y+z=8 \\
& -x+3 y+3 z=1 \\
& -1\left\{\begin{array}{l}
3 x+4 z=3 \\
3 x+4 z=9
\end{array}\right. \\
& 3 x+4 z=9 \\
& O=6 \text { false } \Rightarrow \text { NO Solution } \phi
\end{aligned}
$$

Let's take eqn $2 \rightarrow$ update our general

$$
\begin{gathered}
x+2 y+z=4 \\
3 y+2 y+z=4 \\
5 y+z=4 \\
z=4-5 y \\
z=4-5(-2) \\
=14
\end{gathered}
$$ Solution

$$
\begin{aligned}
& (3 y, y, 4-5 y) \\
& \text { ex: } \\
& y=0 \rightarrow(0,0,4) \\
& y=1 \rightarrow(3,1,-1) \\
& y=-2 \rightarrow(-6,-2,14)
\end{aligned}
$$

Recall from Algebra 1
Simplify

$$
\begin{aligned}
\frac{3}{x+2}-\frac{2}{x-4} & =\frac{3(x-4)}{(x+2)(x-4)}-\frac{2(x+2)}{(x-4)(x+2)} \\
& =\frac{3(x-4)-2(x+2)}{(x+2)(x-4)} \\
& =\frac{3 x-12-2 x-4}{(x+2)(x-4)}=\frac{x-16}{(x+2)(x-4)}
\end{aligned}
$$

The reverse process is called Partial fraction decomposition.

$$
\begin{aligned}
& \frac{20 x-4}{3 x^{2}-14 x-5}=\frac{20 x-4}{(3 x+1)(x-5)}=\frac{A}{3 x+1}+\frac{B}{x-5} \\
& \text { find Partial } \\
& \text { fraction } \\
& \text { decomposition } \\
& 20 x-4=A(x-5)+B(3 x+1) \\
& \text { Let } x=5 \\
& 20(5)-4=A(5-5)+B(3.5+1) \\
& 96=A \cdot O+B \cdot 16 \\
& 96=16 B \rightarrow B=6
\end{aligned}
$$

Let $x=0$

$$
\begin{aligned}
20(0)-4 & =A(0-5)+6(3 \cdot 0+1) \\
-4 & =-5 A+6 \quad-10=\frac{-5 A}{A B=2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{20 x-4}{3 x^{2}-14 x-5}=\frac{2}{3 x+1}+\frac{6}{x-5} \\
& \frac{-10 x-11}{x^{2}+5 x-6}=\frac{-10 x-11}{(x+6)(x-1)}=\frac{A}{x+6}+\frac{B}{x-1} \\
& \text { find P.F.D. }: \frac{-7}{x+6}+\frac{-3}{x-1}=\frac{A(x-1)+B(x+6)}{(x+6)(x-1)} \\
& -10 x-11=A(x-1)+B(x+6) \\
& x=1 \Rightarrow-10(1)-11=A \cdot 0+B \cdot 7 \quad-21=7 B \\
& x=-6 \Rightarrow-10(6)-11=A \cdot(-7)+B \cdot 0 \quad 49=-7 A \\
& A=-3
\end{aligned}
$$

find P.F.D:

$$
\begin{aligned}
& \frac{13 x^{2}+2 x+45}{2 x^{3}+18 x}=\frac{13 x^{2}+2 x+45}{2 x\left(x^{2}+9\right)}=\frac{A}{2 x}+\frac{B x+C}{x^{2}+9} \\
& 13 x^{2}+2 x+45=A\left(x^{2}+9\right)+2 x(B x+C) \\
& 13 x^{2}+2 x+45=\frac{A x^{2}+9 A+2 B x^{2}+2 C x}{2} \\
& 13 x^{2}+2 x+45=(A+2 B) x^{2}+2 C x+9 A \\
& A+2 B=13 \rightarrow 5+2 B=B \\
& 2 C=2 \rightarrow C=1 \\
& 9 A=45 \rightarrow A=5 \quad 2 B=8 \\
& \\
& \\
& \hline B=4 \\
& \frac{13 x^{2}+2 x+4}{2 x^{3}+18 x}=\frac{5}{2 x}+\frac{4 x+1}{x^{2}+9}
\end{aligned}
$$

find P.F.D.:

$$
\begin{aligned}
& \frac{17 x^{2}-7 x+18}{7 x^{3}+42 x}=\frac{17 x^{2}-7 x+18}{7 x\left(x^{2}+6\right)}=\frac{A}{7 x}+\frac{B x+C}{x^{2}+6} \\
& 17 x^{2}-7 x+18=A\left(x^{2}+6\right)+(B x+C) \cdot 7 x \\
& 17 x^{2}-7 x+18=A x^{2}+6 A+7 B x^{2}+7 C x \\
& 17 x^{2}-7 x+18=(A+7 B) x^{2}+7 C x+6 A \\
& 18=6 A \rightarrow A=3 \\
& -7=7 C \rightarrow B \rightarrow-1 \\
& 17=A+7 B \rightarrow 17=3+7 B \rightarrow B=2 \\
& \frac{3}{7 x}+\frac{2 x-1}{x^{2}+6}
\end{aligned}
$$

find P.F.D.

$$
\begin{aligned}
& \frac{x^{2}+26 x+100}{x^{3}+10 x^{2}+25 x}=\frac{x^{2}+26 x+100}{x\left(x^{2}+10 x+25\right)}=\frac{x^{2}+26 x+100}{x(x+5)^{2}} \\
& \frac{A(x+5)^{2}+B x(x+5)+C x}{x(x+5)^{2}}=\frac{A}{x}+\frac{B}{x+5}+\frac{C}{(x+5)^{2}} \quad \text { Repeated } \\
& \text { Factors } \\
& x^{2}+26 x+100=A(x+5)^{2}+B x(x+5)+C x \\
& \text { Let } x=0 \quad 100=A \cdot 25+B \cdot 0+C \cdot 0 \quad A=4 \\
& \text { Let } x=-5 \\
& \begin{array}{ll}
(-5)^{2}+26(-5)+100 & -5
\end{array} \quad \begin{array}{ll}
\text { Let } x=1 & 127=4 \cdot 3+B \cdot 0-5 C \quad C=1 \\
\text { Let } x \cdot 1 \cdot 6+1 \cdot 1
\end{array} \\
& \hline 127=144+6 B+1 \quad-18=6 B \quad B=-3
\end{aligned}
$$

find P.F.D. For

$$
\frac{2 x^{3}-11 x^{2}-4 x+24}{x^{2}-3 x-10}
$$

first Perform long division

$$
\begin{aligned}
& \text { first Perform } \\
& \begin{array}{l}
x^{2} \sqrt{2 x}=2 x^{3} \begin{array}{r}
x ^ { 2 } - 3 x - 1 0 \longdiv { 2 x ^ { 3 } - 1 1 x ^ { 2 } - 4 x + 2 4 } \\
x^{2}-5
\end{array}-\frac{\left(2 x^{3}-6 x^{2}-20 x\right.}{-5 x^{2}+16 x+24} \\
2 x-5+\left\{\begin{array}{l}
\frac{-\left(-5 x^{2}+15 x+50\right)}{x-26} \\
x^{2}-3 x-10
\end{array} \rightarrow\right. \text { find PFD }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x-26}{x^{2}-3 x-10}=\frac{x-26}{(x-5)(x+2)}=\frac{A}{x-5}+\frac{B}{x+2} \\
& x-26=A(x+2)+B(x-5) \\
& x=5 \quad 5-26=A \cdot 7+B \cdot 0 \quad-21=7 A \\
& x=-2 \quad-2-26=A \cdot 0+B \cdot(-7) \\
& 2 x-5+\frac{4}{x+2}-\frac{3}{x-5} \\
& 2 x
\end{aligned}
$$

System of non linear equations

Solve

$$
\begin{cases}y=-x^{2}+6 x-9 & x^{2}-2 x-3=-x^{2}+6 x-9 \\ y=x^{2}-2 x-3 & x^{2}-2 x-3+x^{2}-6 x+9=0\end{cases}
$$

when $x=1$,

$$
y=1^{2}-2(1)-3
$$

$$
y=-4 \Rightarrow(1,-4)
$$

$$
\begin{gathered}
2 x^{2}-8 x+6=0 \\
x^{2}-4 x+3=0 \\
(x-3)(x-1)=0 \\
x=3 \quad x=1
\end{gathered}
$$

when $x=3$

$$
\begin{aligned}
y & =3^{2}-2(3)-3 \\
& =9-6-3=0
\end{aligned} \Rightarrow(3,0) \quad\{(1,-4),(3,0)\}
$$

work with inequalities Graph $\dot{\text { E }}$ shade

$$
y<\frac{2}{3} x-3
$$

Slope - Int
Broken line

Graph غ shade

$$
\left\{\begin{array}{l}
y \leq 4 \\
y \geq \frac{-2}{3} x+2
\end{array}\right.
$$

Graph \& shade

$$
\begin{cases}x>-2 & \text { Vertical } \\ x^{2}+y^{2} \leq 9 & \text { Circle }\end{cases}
$$

Graph $\dot{1}$ shade

$$
\begin{cases}y>x^{2}-4 & \frac{x \mid y}{0-y} \\ y \leq-x+2 & \frac{20}{2 / 0}\end{cases}
$$

(1) find P.F.D.:

$$
\begin{aligned}
& \frac{2 x^{2}+x-10}{x^{3}+5 x}=\frac{2 x^{2}+x-10}{x\left(x^{2}+5\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+5} \\
& 2 x^{2}+x-10=A\left(x^{2}+5\right)+(B x+C) \cdot x \\
& x=0 \Rightarrow-10=A \cdot 5+(B \cdot 0+C) \cdot 0 \\
& x=1 \Rightarrow-7=-2 \cdot 6+(B \cdot 1+C) \cdot 1 \quad A=-2 \\
& x=1 \Rightarrow-7=-2 \cdot 6+(B \cdot 1+C) \cdot 1 \\
& B+C=5 \\
& x=-1 \Rightarrow \quad-9=-2 \cdot 6+(-B+C) \cdot(-1) \\
& -9=-12+B-C \quad B-C=3 \\
& 2 B=8 \quad B=4 \quad C=1
\end{aligned}
$$

Solve

$$
\begin{aligned}
& \begin{array}{l}
3\left\{\begin{array}{l}
2 x^{2}-x y=24 \\
x^{2}+3 x y=-9
\end{array}\right. \\
\text { when } x=3 \\
3^{2}+3 \cdot 3 y=-9
\end{array} \Rightarrow \frac{\left\{\begin{array}{l}
6 x^{2}-3 x y=72 \\
x^{2}+3 x y=-9
\end{array}\right.}{\begin{array}{ll}
7 x^{2} & =63
\end{array}} \\
& \left.\begin{array}{l}
3^{2}+3 \cdot 3 y=-9 \\
9+9 y=-9
\end{array}\right\} \begin{array}{c}
7 x^{2} \\
\text { when } x=-3
\end{array} x^{2}=9 \quad x= \pm 3 \\
& \begin{array}{c}
+9 y=-9 \\
9 y=-18 \\
y=-2 \\
(3,-2)
\end{array} \begin{array}{c}
\text { when } x=-3 \\
(-3)^{2}+3(-3) y=-9 \\
9-9 y=-9 \\
-\frac{9 y=-18}{y}
\end{array} \quad\{(3,-2),(-3,2)\} \\
& y=2(-3,2)
\end{aligned}
$$

Graph $\dot{\varepsilon}$ Shade

$$
\left\{\begin{array}{l}
x^{2}+y^{2} \leq 9 \\
(x-7)^{2}+y^{2}>4
\end{array}\right.
$$

MATH Success Center
Location: MATH 121
Phone: 909-652-6452
Hours: M-Th 8:.00 AM-8:.00PM
Fri. 10:00 AM -4:00 PM
Sat. $10: 00$ AM - 3:00 PM
Sun. $\quad 10: 00$ AM - 3:00 PM

Looking Ahead:
Combination $\quad{ }^{n} C_{r}=\frac{n!}{r!\cdot(n-r)!}$

$$
\begin{aligned}
& { }_{12} C_{5}=\frac{12!}{5!\cdot 7!}=\frac{72 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{5 \cdot 4 \cdot 75 \cdot 2 \cdot 1 \cdot 7!} \\
& \text { Pascal Triangle }=11.9 .8
\end{aligned}
$$

find

$$
\begin{aligned}
& (A+B)^{5}= \\
& \begin{array}{l}
A^{5}+\uparrow A^{4} B+\uparrow A^{3} B^{2}+\quad A^{2} B^{3}+{ }_{4} A B^{4}+B^{5} \\
\operatorname{lin}_{5} C_{0} \quad 5_{0} C_{4}
\end{array} \\
& \rightarrow{ }_{5} C_{1}=\frac{5!}{1!\cdot 4!}=\frac{5 \cdot 4!}{1 \cdot 4!}=5 \\
& { }_{5} \stackrel{\delta}{C}_{2}=\frac{5!}{2!\cdot 3!}=\frac{5 \cdot 4 \cdot 3!}{2 \cdot 1 \cdot 3!}=10
\end{aligned}
$$

Find the first 4 terms of the expansion of $(A+B)^{12}$

$$
\begin{aligned}
& \text { of }(A+B)^{12} \\
& C_{0} A^{12}+12 C^{11} A^{11} B+122 A^{10} B^{2}+12^{2} A^{9} B^{3}
\end{aligned}
$$

$$
\begin{aligned}
{ }_{12} C_{2}=\frac{12!}{2!\cdot(12-2)!}=\frac{12!}{2!\cdot 10!} & =\frac{\frac{6}{12 \cdot 11 \cdot 10!}}{2 \cdot 1 \cdot 10!} \\
& =66
\end{aligned}
$$

Summation

$$
\begin{gathered}
\underset{\substack{n=1 \\
\sum_{n}^{4}}}{ }(2 n+1)=(2 \cdot 1+1)+(2 \cdot 2+1)+(2 \cdot 3+1)+(2 \cdot+1) \\
\sum_{n=1} \quad n=2 \quad n=3 \quad n=4 \\
\text { Start }
\end{gathered}=3+5+7+9=24
$$

find

$$
\begin{aligned}
& \sum_{n=1}^{5}\left(n^{2}-n\right)=\left(1^{2}-1\right)+\left(2^{2}-2\right)+\left(3^{2}-3\right)+\left(4^{2}-4\right)+\left(5^{2}-5\right) \\
& n=1 \quad n=2 \quad n=3 \quad n=4 \quad n=5 \\
&=0+2+6+12+20=40
\end{aligned}
$$

find the Sum:

$$
\begin{array}{rl}
& \sum_{n=1}^{99}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100} \\
=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{y}{2}-\frac{1}{3}\right)+\left(\frac{y}{33}-\frac{1}{4}\right)+\ldots /+\left(\frac{y}{99}-\frac{1}{100}\right) \\
n=1 \quad n=2 \quad n=3 & n=99
\end{array}
$$

